On this page, we have a list of all of the 100Hz repetition (rep) rate lasers offered by RPMC. If you don’t see a laser with the parameters needed, most of our lasers can be modified for your needs.
For pulsed lasers, unlike continuous-wave (CW) lasers, the output cannot be specified by their output power alone. This is because the output power of a pulsed laser is determined by three different parameters; the laser’s pulse width, pulse energy, and pulse repetition rate.
If you need help selecting the best laser for your application, or defining the laser requirements for a specific application, please contact our product manager for assistance.
The Q-TUNE series is a highly efficient, tunable wavelength laser designed for researchers working with temporally resolved spectroscopy, metrology, photo-acoustic imaging, and remote sensing applications. This laser uses an optical parametric oscillator (OPO) to produce a tunable wavelength range of 410-2300 nm with a linewidth narrower than 6 cm-1, which can be extended to 210-410 nm with an optional second harmonic generator. With a pulse duration shorter than 5ns and an upper repetition rate of 100Hz, the Q-TUNE series provides a perfect coherent light source for precise scientific measurements.
The Q-SHIFT series of Q-switched DPSS lasers is designed for researchers and application specialists working in micromachining, dermatology, LIDAR, time-resolved laser spectroscopy, and LIBS applications. With its built-in nonlinear wavelength conversion stage, this series allows the production of unconventional fundamental DPSS wavelengths, including 1163, 1177, 1300, 1317, 1551 and 1571 nm options, making it an ideal choice for those seeking wavelengths that are not accessible with conventional solid-state laser sources. With the optional harmonics generator, it is possible to generate up to the 4th harmonic for each fundamental wavelength, providing even more versatility.
The Q-SPARK series is an air-cooled, diode-pumped, Q-switched laser designed for researchers and application specialists working with ablation, LIDAR, remote sensing, and LIBS applications. The laser produces sub-nanosecond or nanosecond pulses with peak power up to 20 MW and pulse energies up to 10 mJ, making it ideal for a wide range of applications. With a short <1.5 ns pulse, compact air-cooled package, and innovative water-free laser crystal end-pumping technology, the Q-SPARK series delivers high-quality, low divergence, Gaussian-like laser beams.
The Q2 series is a diode-pumped, fully air-cooled, Q-switched laser designed for a wide range of applications that require high peak power pulses. Its innovative water-free laser crystal end-pumping technology produces Gaussian-like, low divergence laser beams with high peak powers, allowing for efficient harmonics conversion through the 5th harmonic. This versatile platform can be configured in many ways, including up to 80mJ pulse energy at 10 Hz pulse repetition rate or up to 20mJ at 100 Hz. The laser can emit either 1053 nm or 1064 nm wavelength, and in the short cavity configuration, pulse duration can be reduced by 50% in comparison to standard configuration.
The Q2HE series is a high–energy, q-switched, diode-pumped solid-state (DPSS) laser series, available in either 1053nm or 1064nm fundamental wavelengths, with optional 2nd, 3rd, 4th, or 5th harmonic generation. This air-cooled series of lasers is designed for a wide range of applications that require high peak power pulses. Due to a short laser cavity, excellent thermal properties of the crystal, and an innovative water-free crystal cooling technology, the Q2HE series can deliver up to 120mJ of pulse energy and/or up to 4W average output power. This advanced laser design results in a compact, user-friendly turnkey system that requires little maintenance.
The Microchip series is a line of ultra-compact, passively q-switched, single longitudinal mode (SLM), narrow linewidth, DPSS lasers that offer exceptional performance in a compact form factor. The lasers feature pulse durations ranging from 400 ps to 2 ns, energy levels up to 80 µJ, and repetition rates up to 100 kHz. Available in wavelengths from the UV to the NIR, this series is designed for OEM integrators and researchers working with LIDAR, 3D scanning, LIBS, night vision, and more. The lasers offer both nanosecond and picosecond options and are interchangeable with the same form factor and electrical and software interfaces across wavelengths, making them a flexible and versatile solution.