Material Processing & Surface Modification Lasers

What are Material Processing & Surface Modification Lasers?

Material Processing lasers are advanced tools that utilize the power of focused laser light (typically pulsed) to modify and transform various types of materials. Material processing lasers can perform tasks such as cutting, engraving, drilling, marking, micromachining, and non-thermal ablation with precision and efficiency. The versatility and high degree of control offered by these lasers make them indispensable tools for achieving intricate and complex material alterations, contributing to advancements in technology and enhancing industrial processes.

Surface Modification lasers are specialized tools used to alter the properties and characteristics of various materials at the surface level, typically utilizing pulsed lasers. These lasers utilize precise energy deposition to induce physical or chemical changes in the targeted material, resulting in desired modifications. There are several techniques employed in surface modification and treatment, each with its own laser system and methodology. Some common examples include texturing, peening, and marking applications.

Have questions?

Material Processing & Surface Modification Laser Applications

Cutting/Drilling Lasers: Laser cutting and drilling is a process in which q-switched lasers (typically high power, ns pulsed) are used to thermally ablate material to form holes and cuts in various materials, including metals, polymers, ceramics, and more. In both laser cutting and drilling the primary objective is to remove material, and as such, the vaporized material must be allowed to outgas, so that is don’t interfere with the process allowing for precise cuts.

Micromachining Lasers: Laser micromachining is a collection of processes involving sub-millimeter machining of small parts or features on a material using precise and controlled techniques. This subtractive (material removal) process typically involves using specialized micromachining lasers (typically ps or fs pulsed, UV green & IR) to cut, drill, ablate, or otherwise shape materials with accuracy and precision.

Non-Thermal Ablation Lasers: Non-thermal ablation, often performed using ultrafast lasers, is an advanced method employed to remove material with exceptional precision and minimal heat-induced damage. This technique relies on ultra-short laser pulses (typically ps or fs pulsed) which deliver an intense burst of energy in a fraction of a second, removing material through non-thermal or cold ablation.

Thin Film Removal Lasers: Laser thin film removal is the process of selectively ablating a very thin layer of material from a substrate, and is widely used on silicon, glass, ceramics, plastics, and metals. These lasers are generally short-pulsed (typically fs, ps or even ns pulsed UV green & IR, high quality TEM00 beam) with the ability to operate at high repetition rates to allow for sufficient pulse overlap at high processing speeds without damaging the substrate.

Marking Lasers: Laser marking is a process of creating permanent marks or patterns on a material’s surface using laser technology. Unlike traditional marking methods like ink printing or engraving, laser marking offers advantages such as high precision, durability, non-contact processing, and the ability to mark a wide range of materials. Laser marking lasers are specifically designed lasers used for the marking process (typically ns or ps pulsed q-switched).

Texturing Lasers: Laser texturing involves engraving the negative image of an intricate design into a mold to produce an end product with a raised decorative patterned surface, allowing molded parts to mimic the look of leather, wood, and other materials. Laser engraving (typically ns or ps pulsed with high quality TEM00 beam) the interior of the mold instead of chemically etching it eliminates the need for hazardous, corrosive chemicals and allows for a completely digitized process.

Recommended Laser Series

We recommend the following laser series for Material Processing & Surface Modification applications. There can often be a ton of options and many variables. Contact us today for help finding the perfect laser for your specific application!

Have questions?

Jenlas Fiber ns

The JenLas Fiber ns series is a versatile line of fiber lasers designed for OEM integrators, researchers, and applications specialists working with material processing applications. Available in 20, 30, 55, and 100W power configurations, this air-cooled laser series boasts reliable, industry-tested fiber laser technology and an adjustable pulse length. With pulse duration settings ranging from 50 to 200 nanoseconds and peak pulse powers of up to 8kW, this series offers improved performance and extended control capabilities, allowing for pulse repetition rates and pulse lengths to be changed by choosing different modes. The JenLas Fiber ns series is available with a complete set of customizable accessories, including laser controllers, beam expanders, and air or water cooling. 

MicroMake Series

MicroMake: Micromachining Laser SystemMicroMake Series from Bright System is an integrated compact laser micromachining system for high precision and resolution applications such as ablation and cutting of programmable arbitrary shapes. The sub-nanosecond MicroMake series is a flexible platform capable of >35kW of peak power and processing speeds up to 40mm/second. The system includes all the needed devices for direct laser micro-processing in a single monolithic air-cooled configuration. Live microscope imaging of the sample is offered during all process phases for alignment and immediate quality check. All these features perfectly suit a large variety of materials utilized in the fields of microelectronic circuits, displays fabrication and correction, biomedical device machining and optical substrates microprocessing.

neoMOS Series

neoMOS 700fsThe neoMOS ultrashort pulse laser series is a reliable and low maintenance system designed for 24/7 industrial use. Its ultra-compact laser head has the smallest footprint available, making it easy to integrate into different systems. The laser systems are highly flexible and can be customized to meet specific needs, providing a wide range of laser parameters and pulse durations. With available pulse durations between 700fs and 70ps, repetition rates from single-shot to 80MHz, up to 500µJ pulse energy, average output powers up to 100W, multi-megawatt peak powers, and perfect TEM00 beam quality, these lasers can tackle many applications and are ideal for processing demanding materials such as transparent glasses and plastics.

neoAMP Series

neoVAN - DPSS AmplifierThe neoAMP series includes the neoVAN and neoYb DPSS laser amplifiers, designed to boost the average power or pulse energy for a wide range of applications. The flexible system design ensures a high degree of scalability, and the ultra-compact modules are easy to integrate into existing processing or scientific systems. The neoVAN and neoYb amplifiers are highly reliable and offer proven long-term stability, enabling a range of applications that include high peak power, short pulse picosecond lasers for micromachining, or single-frequency radiation for gravitational wave detection.

Nps Series


The NPS series of ultrafast lasers is the ultimate solution for OEM integrators and researchers working with nonlinear optics applications like OPO pumping and narrowband Raman spectroscopy. The NPS series boasts remarkable features such as up to 10W average output power, <7ps pulse width, and a 40MHz repetition rate. The transform-limited operation, with a spectral width of <0.3nm, and accurate central wavelengths make these lasers a suitable candidate for highly efficient amplification by Nd-doped DPSS amplifiers.

Onda Series

Onda 532nm: 532nm High Energy Laser

The Onda series is a DPSS nanosecond OEM laser platform designed for high-end applications requiring excellent beam quality and high peak power in materials such as metals, glass, plastics, and various delicate and hard materials. This compact and easy to use laser series is available in wavelengths of 266, 355, 532, and 1064nm, with an extended operating temperature range and superior performance to cost ratio. The Onda seriesinternal optical layout and accurate temperature management enable high output energies without compromising the lifetime of the THG and FHG stages. 

One Series

One-1030-100: 1030nm Miniature Q-Switched Laser

The One Series is a versatile, passively q-switched laser series designed specifically for OEM integrators and application specialists working with industrial and portable applications like materials processing and airborne LIDAR. With its compact size and ability to operate at a fundamental wavelength of 1030nm, this series offers exceptional performance for a range of applications. The One Series can be configured in a fixed operational rep rate configuration, or an externally triggerable configuration. Available in both high energy configurations (up to 100uJ) and high average power configurations (up to 3W), the One series is a reliable choice for any application. 

Microchip Series

Bright Microlaser Microchip SB1 Laser

The Microchip series is a line of ultra-compact, passively q-switched, single longitudinal mode (SLM), narrow linewidth, DPSS lasers that offer exceptional performance in a compact form factor. The lasers feature pulse durations ranging from 400 ps to 2 ns, energy levels up to 80 µJ, and repetition rates up to 100 kHz. Available in wavelengths from the UV to the NIR, this series is designed for OEM integrators and researchers working with LIDAR, 3D scanning, LIBS, night vision, and more. The lasers offer both nanosecond and picosecond options and are interchangeable with the same form factor and electrical and software interfaces across wavelengths, making them a flexible and versatile solution. 

SOL Series

SOL-03-532: 532nm Nanosecond Laser

The SOL series is the most compact, air-cooled, Q-switched DPSS nanosecond laser available in the power range from 4W to 40W @ 1064nm. Available @ 1064nm, 532nm, and 355nm, the SOL laser series offers excellent beam quality and high peak power, capable of up to 10W and 650µJ at 532nm and 4W @ 355nm, making it the ideal source for the most demanding industrial and scientific applications. With a rugged, compact, lightweight, and easy to use single unit design, the SOL laser is easy to integrate into micro-machining and marking applications, providing superior operational flexibility and performance/cost ratio. 

VaryDisk Series

VaryDisk E150The VaryDisk Series is a versatile and fully functional family of thin disk laser systems, providing high pulse energies at high average powers, suitable for laboratory investigations or industrial use. These thin disk regenerative amplifiers provide a range of beam parameters, depending on the configuration and your specific application needs. With a range of output specifications to choose from, including multiple seed lasers, customers can select the ideal configuration to meet their needs with many customization options available. The base configurations offer options for pulse widths in the fs, ps, and ns range, up to 1000 W average power, up to 150 mJ pulse energy, 1 kHz to 125 kHz rep. rate, and 1030 nm, 515 nm (SHG), and 343 nm (THG) wavelength options.

Wedge Series

Wedge-XF-1064: 1064nm Picosecond Laser

The Wedge series is a line of DPSS lasers designed specifically for OEM applications such as micro machining of hard and soft materials, specialty marking, glass and crystal engraving, LIDAR, LIBS, spectroscopy, and medical diagnostics. These diodepumped lasers, based on proprietary fast Q-switching technology, are compact, sealed, and monolithic which makes them insensitive to vibrations and harsh environments. With high peak powers and relatively low energy and heat generation, they allow efficient ablation and non-linear interaction with most materials. The compact and lightweight package is a great benefit in LIDAR and other aerospace applications, while short pulses provide extremely precise time-of-flight measurements.