Imaging & Analysis Lasers

What are Imaging and Analysis Lasers?

Imaging & Analysis Lasers refer to advanced laser systems (typically pulsed) used in the research and biophotonics markets for various applications. These lasers are specifically designed for precise imaging and analysis techniques, enabling researchers to study and understand complex biological processes. They offer capabilities for fluorescence lifetime imaging, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-ToF) mass spectrometry, and particle image velocimetry (PIV), among others. By providing tailored laser sources and specific parameters suitable for each application, imaging & analysis lasers facilitate high-resolution imaging, biomolecular analysis, and fluid flow measurements. These lasers play a crucial role in advancing research in areas such as biology, medicine, and fluid dynamics, contributing to scientific discoveries and advancements in various fields.

Have questions?

Imaging & Analysis Applications

Fluorescence Lifetime Lasers: Fluorescence lifetime imaging microscopy (FLIM) is a method used for measuring the time a molecule spends in the excited state. Typical lifetimes are on the order of a few picoseconds to hundreds of nanoseconds depending on the molecule, therefore ultra-short pulsed in the picosecond or femtosecond range are required from fluorescence lifetime lasers.

Maldi-ToF Lasers: Maldi ToF is a method used in mass spectrometry for measuring the time it takes for ionized particles of different masses to drift to the detector.  For this process to work, there must be a mechanism in place to ionize the particles (e.g., photoionization).  This technique traditionally uses high pulse energy q-switched ultraviolet lasers (typically ns or ps pulsed, UV, green, or IR microchip lasers), because the photon energy must be greater than the ionization energy of the particle.

Particle Image Velocimetry Lasers: Particle Image Velocimetry (PIV) is an experimental method used for determining the velocity of a flowing fluid by monitoring the particles in the stream which are illuminated by a laser.  For this application to work, particle image velocimetry lasers and cameras must be time-gated and triggered at the same time so that each image can be precisely mapped to a point in time. Typically, 532nm pulsed DPSS lasers are utilized, but any pulsed visible laser should work.

Recommended Laser Series

We recommend the following laser series options for Imaging & Analysis applications. There can often be a ton of options and many variables. Contact us today for help finding the perfect laser for your specific application!

Have questions?

Matchbox Series

R1Z4-Matchbox Laser

The Matchbox series offers excellent performance and reliability in the “World’s Smallest” ultra-compact, all-in-one, integrated laser head. They can operate on a 5V power supply while maintaining low noise operation. The monolithic design of the Matchbox Series laser includes thermally stabilized optics in a hermetically sealed housing, ensuring reliable and maintenance-free operation. This series is available in wavelengths from 405 nm thru 1064nm, with options for collimated beam or fiber-coupled output, and single-mode and multimode versions.

Skylark Series

The Skylark series of ultrareliable, high performance, CW single-frequency lasers are available at a variety of wavelengths with high average powers, making them well suited for a variety of highly specialized scientific and industrial applications. BRaMMS Technology® enables superior performance, high output powers, and outstanding beam properties in an overall compact footprint. The Skylark series of lasers are utilized in a range of applications including holography, metrology, spectroscopy, and quantum technology.

LaserBoxx Low Noise Series

The LaserBoxx Low Noise series of CW diode laser modules, with a variety of wavelengths from 375 to 785nm and output powers up to 350mW, offers highly customizable laser solutions for OEM and plug & play modules. With advanced features such as excellent beam quality, stability, and modulation capabilities, our lasers provide ultra-low noise and a wide range of options for SM, MM, and PM fiber coupling. Our dedicated control software, USB and RS232 interfaces, and external controller with power display make integration, operation, and remote diagnostics a breeze. Additionally, our rugged and compact design and wide variety of standard wavelengths ensure that our lasers can meet your specific needs. 

LaserBoxx HPE Series

LBX-488

The LaserBoxx HPE Series is a highly versatile and customizable laser module series that offers superior performance and reliability in a compact, driver integrated laser head. With a wide range of wavelengths from the UV to the NIR, this series offers high-power laser diode modules that are perfect for a variety of applications. The LaserBoxx HPE series also includes removable multimode fiber coupling options and dedicated control software with USB and RS232 interfaces, as well as an external controller with power display, ensuring easy integration and precise power and modulation control. 

LXCc Series

R2Z3-L4Cc Combiner

The LXCc series is a range of compact, highly customizable, and flexible all-in-one laser combiners that provide the widest variety of wavelength options, up to 7 different laser lines (up to 500 mW output power per line), direct modulation on every source, SLM capabilities, proven long-term stability, and many other advanced features. The turnkey or OEM versions allow a large choice of lasers from 375nm up to 1064nm. The extension module provides the ultimate level of flexibility with options for up to 4 optical fiber outputs, AOTF modulator, motorized ND filter, integrated fast switching output ports for FRAP, or adjustable split power for light-sheet microscopy. 

MicroMake Series

MicroMake: Micromachining Laser SystemMicroMake Series from Bright System is an integrated compact laser micromachining system for high precision and resolution applications such as ablation and cutting of programmable arbitrary shapes. The sub-nanosecond MicroMake series is a flexible platform capable of >35kW of peak power and processing speeds up to 40mm/second. The system includes all the needed devices for direct laser micro-processing in a single monolithic air-cooled configuration. Live microscope imaging of the sample is offered during all process phases for alignment and immediate quality check. All these features perfectly suit a large variety of materials utilized in the fields of microelectronic circuits, displays fabrication and correction, biomedical device machining and optical substrates microprocessing.

Q-TUNE-IR Series

Q-TUNE-IRThe Q-TUNE-IR series is the perfect high peak power, coherent, DPSS light source for researchers working with infrared spectroscopy applications. This series uses an Optical Parametric Oscillator (OPO) to produce tunable wavelength in the 1380 – 4500 nm range with a linewidth less than 10 cm-1, achieving > 6.5mJ of pulse energy @ 3500nm for the F-10 configuration (> 2mJ @ 3500nm for C-10) with a 10Hz repetition rate. The Q-TUNE-IR requires little maintenance, with all laser electronics integrated into the housing, including an air-cooling system, eliminating the need for chillers or large power supplies, all while providing a guaranteed pump diode lifetime greater than 2 giga-shots. 

Q-TUNE Series

Q-TUNE-IR

The Q-TUNE series is a highly efficient, tunable wavelength laser designed for researchers working with temporally resolved spectroscopy, metrology, photo-acoustic imaging, and remote sensing applications. This laser uses an optical parametric oscillator (OPO) to produce a tunable wavelength range of 410-2300 nm with a linewidth narrower than 6 cm-1, which can be extended to 210-410 nm with an optional second harmonic generator. With a pulse duration shorter than 5ns and an upper repetition rate of 100Hz, the Q-TUNE series provides a perfect coherent light source for precise scientific measurements. 

Q-SHIFT Series

Q-Shift SeriesThe Q-SHIFT series of Q-switched DPSS lasers is designed for researchers and application specialists working in micromachining, dermatology, LIDAR, time-resolved laser spectroscopy, and LIBS applications. With its built-in nonlinear wavelength conversion stage, this series allows the production of unconventional fundamental DPSS wavelengths, including 1163, 1177, 1300, 1317, 1551 and 1571 nm options, making it an ideal choice for those seeking wavelengths that are not accessible with conventional solid-state laser sources. With the optional harmonics generator, it is possible to generate up to the 4th harmonic for each fundamental wavelength, providing even more versatility. 

Q-Spark

Quantas-Q-SPARK-266: High energy, compact, nanosecond, DPSS laser

The Q-SPARK series is an air-cooled, diode-pumped, Q-switched laser designed for researchers and application specialists working with ablation, LIDAR, remote sensing, and LIBS applications. The laser produces sub-nanosecond or nanosecond pulses with peak power up to 20 MW and pulse energies up to 10 mJ, making it ideal for a wide range of applications. With a short <1.5 ns pulse, compact air-cooled package, and innovative water-free laser crystal end-pumping technology, the Q-SPARK series delivers high-quality, low divergence, Gaussian-like laser beams.

Q1 Series

Quantas-Q1-211: High energy, compact, nanosecond, DPSS laser

The Q1 series is a compact, energy-efficient, diode pumped, air-cooled, Q-switched laser available at 1064 and 1053nm with up to 45 mJ of pulse energy and rep rates up to 50Hz. The high peak powers and low divergence of the Q1 series enable efficient harmonic conversion through the 5th harmonic (213 or 211nm). The innovative design results in a user-friendly, turnkey system that requires little maintenance, and the laser’s variable pulse repetition rate and built-in sync pulse generator provide flexibility for triggering user equipment. 

Q2 Series

Quantas Q2 QLI

The Q2 series is a diode-pumped, fully air-cooled, Q-switched laser designed for a wide range of applications that require high peak power pulses. Its innovative water-free laser crystal end-pumping technology produces Gaussian-like, low divergence laser beams with high peak powers, allowing for efficient harmonics conversion through the 5th harmonic. This versatile platform can be configured in many ways, including up to 80mJ pulse energy at 10 Hz pulse repetition rate or up to 20mJ at 100 Hz. The laser can emit either 1053 nm or 1064 nm wavelength, and in the short cavity configuration, pulse duration can be reduced by 50% in comparison to standard configuration. 

Q2HE Series

Quantas-Q2HE-211: High energy, compact, nanosecond, DPSS laser

The Q2HE series is a highenergy, q-switched, diode-pumped solid-state (DPSS) laser series, available in either 1053nm or 1064nm fundamental wavelengths, with optional 2nd, 3rd, 4th, or 5th harmonic generation. This air-cooled series of lasers is designed for a wide range of applications that require high peak power pulses. Due to a short laser cavity, excellent thermal properties of the crystal, and an innovative water-free crystal cooling technology, the Q2HE series can deliver up to 120mJ of pulse energy and/or up to 4W average output power. This advanced laser design results in a compact, user-friendly turnkey system that requires little maintenance.  

Wedge Series

Wedge-XF-1064: 1064nm Picosecond Laser

The Wedge series is a line of DPSS lasers designed specifically for OEM applications such as micro machining of hard and soft materials, specialty marking, glass and crystal engraving, LIDAR, LIBS, spectroscopy, and medical diagnostics. These diodepumped lasers, based on proprietary fast Q-switching technology, are compact, sealed, and monolithic which makes them insensitive to vibrations and harsh environments. With high peak powers and relatively low energy and heat generation, they allow efficient ablation and non-linear interaction with most materials. The compact and lightweight package is a great benefit in LIDAR and other aerospace applications, while short pulses provide extremely precise time-of-flight measurements.