Adjustable Rep Rate Lasers:

Versatile Performance for Every Application in ANY Market

          • Flexible Repetition Rate for Optimized Performance
          • Versatile Configurations & Wavelengths from UV to LWIR
          • Various Technology w/ Customizable Solutions for Any Need

We’re experts at helping select the right configuration for you!

The Adjustable Rep Rate Lasers We Offer:

simple line graphic with an x/y graph and a wave or pulse, illustrating various pulse options

Flexible Repetition Rate for Optimized Performance
    • Variable repetition rates from single-shot to multi-MHz for application versatility
    • Allows tuning for specific material interactions, from precision marking to deep penetration
    • Enhances process efficiency & throughput, adaptable to diverse industrial & research needs

simple line art illustrating many choices and options

Versatile Configurations & Wavelengths from UV to LWIR
    • Huge wavelength range: UV (266nm) to LWIR (10µm) – Tunable wavelength option
    • Free-space & fiber-based solutions w/ narrow linewidth & broadband options
    • Configurable options allow application flexibility across markets

gear arrow and puzzle pieces representing highly flexible and easily integrated lasers

Various Technology w/ Customizable Solutions for Any Need
    • DPSS, fiber lasers, microchip lasers, supercontinuum lasers and OPA
    • Customizable wavelength, energy, cooling, and many other options
    • Let us know your unique requirements & we will find the perfect solution for you!

For nearly 30 years, RPMC’s selection of Adjustable Rep Rate Lasers has set the standard for affordable precision across a wide range of applications, from defense to medical, industrial, and research with 1000’s of successful units in the field. We understand that every application has unique requirements, which is why our configurable platforms are designed to offer the perfect fit for your needs—whether you’re working with fundamental wavelengths, harmonics, or specialty wavelengths. As your partner, we’re here to guide you through the selection process, ensuring that your adjustable rep rate laser integrates seamlessly into your existing systems. With time-tested technology that balances power and precision, we’re committed to supporting your success every step of the way.

Don’t hesitate to ask us anything!

Filters Reset

Category

Type

Wavelength Selection

Picture Part Number Wavelength (nm) Description Type
sleek modern gray colored harmony optical parametric amplifier Harmony 210-10000, Multiple Wavelength Options Optical Parametric Amplifier, OPA, 210-10,000nm, <200fs, up to 300kHz, 30-200µJ pump energy Pulsed Fiber Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Ruggedized, Adjustable Rep Rate, Customizable
rendering of a CAD drawing of a compact, modern, OEM, DPSS laser housing Iris 447, 671 DPSS Laser, ns pulsed, 447 or 671nm, up to 4W, up to 100kHz Pulsed DPSS Lasers, Low SWaP, Adjustable Rep Rate, High Peak Power, Low Jitter
sleek modern gray colored Jasper Flex compact high-power all-fiber femtosecond & picosecond laser oscillator Jasper Flex 1030 Fiber Laser, fs/ps pulsed, 1030nm, up to 30W, up to 1MHz, up to 100µJ, <270fs-8ps, Single Shot - 20MHz Pulsed Fiber Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, Adjustable Pulse Width, High Peak Power
sleek modern gray colored Jasper Micro compact all-fiber femtosecond & picosecond laser oscillator Jasper Micro 1030 Fiber Laser, fs/ps pulsed, 1030nm, up to 7W, up to 5µJ, <270fs-8ps, Single Shot - 20MHz Pulsed Fiber Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, Adjustable Pulse Width, High Peak Power
sleek modern gray colored Jasper X0 high-power all-fiber femtosecond & picosecond laser oscillator with 5-year warranty ribbon Jasper X0 1030 Fiber Laser, fs/ps pulsed, 1030nm, up to 60W, up to 200µJ, <270fs-8ps, Single Shot - 20MHz Pulsed Fiber Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, Adjustable Pulse Width, High Peak Power
Jenlas Fiber ns 1085 Fiber Laser, ns pulsed, 1085nm, up to 100W, up to 1.1mJ, up to 200kHz Pulsed Fiber Lasers, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Customizable
Image of a modern OEM laser housing made of high-grade aluminum, long silver rectangle body with fan slits, output window and stickers Lampo 266, 355, 532, 1064 DPSS Laser, ps pulsed, 266-1064nm, up to 4.5MW, up to 250µJ, 50kHz-40MHz Pulsed DPSS Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, High Peak Power
neoMOS 1064 DPSS Laser, ps/fs Pulsed, 1064nm, up to 100W, up to 500µJ, up to 80MHz Pulsed DPSS Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, High Peak Power, Customizable
rendering of a CAD drawing of a compact, modern, OEM, DPSS laser housing Nimbus 770, 1064 DPSS Laser, ns/ps pulsed, 770/1064nm, up to 2mJ, SS to 1kHz Pulsed DPSS Lasers, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter, Customizable
Onda 1064nm Onda 266, 355, 532, 1064 DPSS Laser, ns pulsed, 266-1064nm, up to 800µJ, up to 100kHz Pulsed DPSS Lasers, Adjustable Rep Rate, High Peak Power, Customizable
One-1030-100: 1030nm Miniature Q-Switched Laser One 1030, 1047, 1064 DPSS Laser, ns pulsed, 10XX nm, up to 4W, up to 200µJ, 5-20 ns, passive Qsw up to 30kHz Pulsed DPSS Lasers, Airborne Laser, Low SWaP, Ruggedized, Adjustable Rep Rate, High Peak Power, Customizable
sleek, modern, light grey colored DPSS laser housing Quantas-Q1 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 40mJ, up to 50Hz Pulsed DPSS Lasers, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
sleek modern dpss laser housing, simple cubic design, black and red with optical fiber & connector SL-Pico 410-2400 Supercontinuum Laser, ps pulsed, White Light, 410-2400nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
simple, compact OEM pulsed laser housing with cooling fan and f-theta lens SOL 355, 532, 1064 DPSS Laser, ns pulsed, 355-1064nm, up to 60W, up to 200kHz Pulsed DPSS Lasers, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power
sleek modern dpss laser housing, simple cubic design, black and blue TLS-Blue-Fixed-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
sleek modern dpss laser housing, simple cubic design, black and red TLS-Red-Tunable-Bandwidth Tunable Tunable Supercontinuum Laser, Broadband, ps pulsed, 410-1700 nm, up to 200MHz Supercontinuum Laser, Broadband Lasers, Tunable Lasers, Ultrafast Lasers, Multi Wavelength, Adjustable Rep Rate, High Peak Power, Turn-Key System
clean, modern, silver colored OEM DPSS Laser housing Vento 532, 1064 MOPA Laser, ns/ps pulsed, 532/1064nm, up to 1.5mJ, up to 100W, up to 200kHz Pulsed DPSS Lasers, Mil-Spec Lasers, Airborne Laser, Low SWaP, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Customizable
metal pulsed laser housing, gray metal, cooling fins, output port Wedge 266-3100 DPSS Laser, ns/ps pulsed, 266nm to ≈ 3µm, up to 4mJ, up to 100kHz Pulsed DPSS Lasers, Airborne Laser, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter

Our adjustable repetition rate lasers provide exceptional flexibility, with tunable rates from single-shot to multi-MHz, enhancing process efficiency and tailoring output for precise applications, from marking to deep material penetration. With a broad wavelength range from UV (266 nm) to LWIR (10 µm) and configurations in both free-space and fiber-based setups, these lasers cater to a diverse set of industrial and research applications. Equipped with various technology options, including DPSS, fiber lasers, and OPAs, our customizable solutions ensure you receive exactly what you need for any unique application requirements.

Let Us Help

With 1000s of fielded units, and over 25 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

If you have any questions, or if you would like some assistance please contact us. Furthermore, you can email us at [email protected] to talk to a knowledgeable Product Manager.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

Similar to laser hair removal, laser tattoo removal utilizes a process known as selective photothermolysis to target the embedded ink in the epidermis and dermis.  Photothermolysis is the use of laser microsurgery to selectively target tissue utilizing specific wavelengths of light to heat and destroy the tissue without affecting its surroundings.  In laser tattoo removal this is accomplished by using a focused q-switched laser with a fluence of approximately 10 J/cm2, to heat the ink molecules locally.  Since the q-switched laser’s pulse duration (100 ps to 10 ns) is shorter than the thermal relaxation time of the ink molecules it prevents heat diffusion from taking place.  In addition to minimizing damage to the surrounding tissue, this rapid localized heating results in a large thermal differential, resulting in a shock wave which breaks apart the ink molecules. If you would like more details on pulsed lasers for tattoo removal applications, see our Aesthetics Lasers page here! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

What is the best laser type for multi-photon microscopy?

What is the best laser type for multi-photon microscopy?

Multiphoton excitation requires high peak power pulses. Previously, wavelength tunable Ti:Sapphire lasers dominated this area, leading to the development of standard methods using a conventional pulse regime with typically 100-150 fs pulse duration, 80 MHz repetition rate, and watt level average power with specific wavelengths such as 800 nm, 920 nm, and 1040-1080 nm. Recently, femtosecond pulsed fiber lasers have started becoming the optimal solution due to their low relatively low fluence, limiting damage to living samples. Other advantages provided by fs fiber lasers include a more attractive price point, very compact and robust format, high electrical efficiency, high reliability, and less maintenance of cost of ownership. If you would like more details on why fs fiber lasers are becoming the optimal choice for multi-photon excitation applications, read this article: “Higher Power fs Fiber Lasers to Image Better, Deeper & Faster.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!