355nm Lasers:

High-Precision UV Nd:YAG Lasers for Industrial & Scientific Applications

          • Powerful 355nm UV for Advanced Processing
          • High-Efficiency Pulsed Output for Precision Applications
          • Customizable UV Solutions for OEM & Research

We’re experts at helping select the right configuration for you!

The 355nm Lasers We Offer:

simple line graphic showing a chart with an increasing peak value, illustrating increase, growth, boost in power, etc.

Powerful 355nm UV for Advanced Processing
    • Third harmonic of Nd:YAG at 1064
    • Ideal for semiconductor and PCB processing
    • Supports micromachining and spectroscopy
    • High photon energy for material interactions

simple line art illustrating a 'diamond award' for high-quality

High-Efficiency Pulsed Output for Precision Applications
    • Nanosecond pulses up to 1mJ energy
    • High beam quality for fine processing
    • Stable UV output for reliability
    • Efficient harmonic generation

gear arrow and puzzle pieces representing highly flexible and easily integrated lasers

Customizable UV Solutions for OEM & Research
    • Compact DPSS modules for integration
    • Custom pulse, power, and other options
    • Rugged for industrial and environments

Our 355nm lasers, the third harmonic of 1064nm (Nd:YAG), deliver high-precision UV output for advanced industrial and scientific applications. With nanosecond pulse widths and mJ-level pulses, these DPSS lasers excel in semiconductor wafer processing, PCB cutting, micromachining, and UV spectroscopy. Their high photon energy ensures efficient material interactions, while customizable configurations support OEM and research needs. Compact, rugged designs provide reliable performance in demanding environments, with tailored solutions for specific UV processing requirements. Also, see our 351 nm frequency-tripled Nd:YLF lasers here.

Don’t hesitate to ask us anything!

Filters Reset

Type

Energy Selection

Rep Rate Selection

Picture Part Number Wavelength (nm) Description Type
Aero: High-Energy DPSS Nanosecond/Picosecond Laser Aero 266, 355, 532, 1064 DPSS Laser, ns pulsed, 266-1064nm, up to 200mJ, up to 500Hz Pulsed DPSS Lasers, Airborne Laser, Multi Wavelength, Low SWaP, Ruggedized, High Pulse Energy, High Peak Power, Customizable
Lampo: Compact Ultrafast DPSS Laser Lampo 266, 355, 532, 1064 DPSS Laser, ps pulsed, 266-1064nm, up to 4.5MW, up to 250µJ, 50kHz-40MHz Pulsed DPSS Lasers, Ultrafast Lasers, Ruggedized, Adjustable Rep Rate, High Peak Power
Onda: Compact High Peak Power Nanosecond DPSS Laser Onda 266, 355, 532, 1064 DPSS Laser, ns pulsed, 266-1064nm, up to 800µJ, up to 100kHz Pulsed DPSS Lasers, Adjustable Rep Rate, High Peak Power, Customizable
Q-DOUBLE: Double Pulse DPSS Q-Switched Laser Q-DOUBLE 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, Double ns pulse, 263-1064 nm, up to 100Hz, up to 80mJ, up to 2W avg. power per channel Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
sleek modern light grey Nanosecond DPSS laser Quantas-Q-SPARK-1064 Q-SPARK 266, 355, 532, 1064 DPSS Laser, ns/ps pulsed, 266-1064nm, up to 20mJ, up to 100Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
sleek, modern, light grey colored DPSS laser housing Quantas-Q1 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 40mJ, up to 50Hz Pulsed DPSS Lasers, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
Quantas-Q2-1064: High Energy, Compact, Nanosecond, DPSS Laser Quantas-Q2 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 80mJ, up to 200Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
Quantas-Q2HE: High Energy, Nanosecond, DPSS Laser Quantas-Q2HE 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 DPSS Laser, ns pulsed, 211-1064nm, up to 120mJ, up to 100Hz Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable
SB1-UV: Ultra-Compact Rugged Ultraviolet Microchip Laser SB1-UV 236.5, 266, 355 DPSS Laser, ns pulsed, 236.5-355nm, up to 2µJ, up to 10kHz Pulsed DPSS Lasers, Microchip Lasers, Airborne Laser, Narrow Linewidth, Single Longitudinal Mode (SLM), Low SWaP, Ruggedized, High Peak Power
simple, compact OEM pulsed laser housing with cooling fan and f-theta lens SOL 355, 532, 1064 DPSS Laser, ns pulsed, 355-1064nm, up to 60W, up to 200kHz Pulsed DPSS Lasers, Ruggedized, Adjustable Rep Rate, High Pulse Energy, High Peak Power

Let Us Help

With 1000s of fielded units, and nearly 30 years of experience, providing OEMs, contract manufacturers, and researchers with the best laser solution for their application, our expert team is ready to help! Working with RPMC ensures you are getting trusted advice from our knowledgeable and technical staff on a wide range of laser products.  RPMC and our manufacturers are willing and able to provide custom solutions for your unique application.

If you have any questions, or if you would like some assistance, please contact us. Furthermore, you can email us at [email protected] to talk to a knowledgeable Product Manager.

Check out our Online Store: This page contains In-Stock products and an ever-changing assortment of various types of new lasers at marked-down/discount prices.

We’re experts at helping select the right configuration for you!

Pulsed Lasers FAQs
What is a Pulsed Laser?
What is a Pulsed Laser?

A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!

What is the best laser for LIDAR?

What is the best laser for LIDAR?

There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What is the best laser for tattoo removal?

What is the best laser for tattoo removal?

The best laser for tattoo removal depends on factors like wavelength versatility, pulse duration, and energy output to effectively target various ink colors while minimizing skin damage. Q-switched or ultrafast lasers with pulse durations of 100 ps to 10 ns and a fluence of ~10 J/cm² are ideal for fragmenting ink via selective photothermolysis. For example, the Lampo 266-1064 nm offers multiple wavelengths (266 nm, 532 nm, 1064 nm) for multi-color tattoos, while the Nimbus 770-1064 nm provides customizable sub-nanosecond pulses for precision. The Quantas-Q1 delivers high pulse energy (up to 32 mJ at 1064 nm) for efficient treatments.

For more details on pulsed lasers for tattoo removal applications, see our blog, “Choosing the Right Laser for Tattoo Removal: Key Considerations‘! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!

We’re here to offer expert advice & to you help select the right laser for your application.
Contact Us Here or email us at [email protected]!

What is the difference between active and passive q-switching?
What is the difference between active and passive q-switching?

There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

What type of laser is used for LIBS?
What type of laser is used for LIBS?

A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!

Which IR laser is best for laser target designation?
Which IR laser is best for laser target designation?

There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!