Additional Resources
Whitepapers:
Blogs:
Videos:
Our 211nm Nd:YLF lasers, the fifth harmonic of 1053nm, offer a slightly shorter ultra-deep UV wavelength than 213nm Nd:YAG, providing superior absorption for specific mass spectrometry and ablation tasks. Compared to 213nm, 211nm enhances efficiency in YLF-based systems for niche UV applications. Explore our 213nm lasers or UV Lasers for similar ultra-deep UV solutions.
Picture | Part Number | Wavelength (nm) | Description | Type |
---|---|---|---|---|
|
Quantas-Q1 | 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 | Pulsed DPSS Lasers, Adjustable Rep Rate, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable | |
|
Quantas-Q2 | 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 | Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable | |
|
Quantas-Q2HE | 211, 213, 263, 266, 351, 355, 526.5, 532, 1053, 1064 | Pulsed DPSS Lasers, High Pulse Energy, High Peak Power, Low Jitter, Turn-Key System, Customizable |
The Q1 series is a compact, energy-efficient, diode pumped, air-cooled, Q-switched laser available with up to 32 mJ at 1064 or 40 mJ at 1053nm @ 10 Hz, and rep rates up to 50Hz. The high peak powers and low divergence of the Q1 series enable efficient harmonic conversion through the 5th harmonic (213 or 211nm). The innovative design results in a user-friendly, turnkey system that requires little maintenance, and the laser’s variable pulse repetition rate and built-in sync pulse generator provide flexibility for triggering user equipment.
The Q2 series is a diode-pumped, air-cooled, Q-switched laser emitting at 1064 or 1053nm, designed for a wide range of applications that require high peak power pulses. The water-free end-pumping technology produces high peak powers and low divergence, enabling efficient harmonics conversion through the 5th harmonic (213 or 211nm). This versatile platform can be configured in many ways, including up to 80mJ pulse energy at 10 Hz pulse repetition rate or up to 20mJ at 100 Hz. In the short cavity configuration, pulse duration can be reduced by 50% compared to the standard configuration.
The Q2HE series is a high–energy, q-switched, DPSS laser series, available in either 1053nm or 1064nm fundamental wavelengths, with optional 2nd, 3rd, 4th, or 5th harmonic generation. This air-cooled series of lasers is designed for a wide range of applications that require high peak power pulses. Due to a short laser cavity, excellent thermal properties of the crystal, and an innovative water-free crystal cooling technology, the Q2HE series can deliver up to 120mJ of pulse energy and/or up to 5W average output power. This advanced laser design results in a compact, user-friendly turnkey system that requires little maintenance.
A pulsed laser is any laser that does not emit a continuous-wave (CW) laser beam. Instead, they emit light pulses at some duration with some period of ‘off’ time between pulses and a frequency measured in cycles per second (Hz). There are several different methods for pulse generation, including passive and active q-switching and mode-locking. Pulsed lasers store energy and release it in these pulses or energy packets. This pulsing can be very beneficial, for example, when machining certain materials or features. The pulse can rapidly deliver the stored energy, with downtime in between, preventing too much heat from building up in the material. If you would like to read more about q-switches and the pros and cons of passive vs active q-switches, check out this blog “The Advantages and Disadvantages of Passive vs Active Q-Switching,” or check out our Overview of Pulsed Lasers section on our Lasers 101 Page!
There are actually numerous laser types that work well for various LIDAR and 3D Scanning applications. The answer comes down to what you want to measure or map. If your target is stationary, and distance is the only necessary measurement, short-pulsed lasers, with pulse durations of a few nanoseconds (even <1ns) and high pulse energy are what you’re looking for. This is also accurate for 3D scanning applications (given a stationary, albeit a much closer target), but select applications can also benefit from frequency-modulated, single-frequency (narrow-linewidth) fiber lasers. If your target is moving, and speed is the critical measurement, you need a single-frequency laser to ensure accurate measurement of the Doppler shift. If you want to learn more about the various forms of LIDAR and the critical laser source requirements, check out our LIDAR page for a list of detailed articles, as well as all the LIDAR laser source products we offer. Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!
The best laser for tattoo removal depends on factors like wavelength versatility, pulse duration, and energy output to effectively target various ink colors while minimizing skin damage. Q-switched or ultrafast lasers with pulse durations of 100 ps to 10 ns and a fluence of ~10 J/cm² are ideal for fragmenting ink via selective photothermolysis. For example, the Lampo 266-1064 nm offers multiple wavelengths (266 nm, 532 nm, 1064 nm) for multi-color tattoos, while the Nimbus 770-1064 nm provides customizable sub-nanosecond pulses for precision. The Quantas-Q1 delivers high pulse energy (up to 32 mJ at 1064 nm) for efficient treatments.
For more details on pulsed lasers for tattoo removal applications, see our blog, “Choosing the Right Laser for Tattoo Removal: Key Considerations‘! Get more information from our Lasers 101, Blogs, Whitepapers, and FAQ pages in our Knowledge Center!
We’re here to offer expert advice & to you help select the right laser for your application.
Contact Us Here or email us at [email protected]!
There are a wide variety of q-switch technologies, but the technique as a whole can be broken down into two primary categories of q-switches, passive and active. Active q-switches could be a mechanical shutter device, an optical chopper wheel, or spinning mirror / prism inside the optical cavity, relying on a controllable, user set on/off ability. Passive q-switches use a saturable absorber, which can be a crystal (typically Cr:YAG), a passive semiconductor, or a special dye, and automatically produce pulses based on it’s design. Both passive and active q-switching techniques produce short pulses and high peak powers, but they each have their pros and cons. When choosing between actively q-switched and passively q-switched lasers, the key is to understand the tradeoffs between cost/size and triggering/energy and decide which is best for your particular application. Read more about these tradeoffs in this article: “The Advantages and Disadvantages of Passive vs Active Q-Switching.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!
A laser source used for LIBS must have a sufficiently large energy density to ablate the sample in as short a time possible. Typically, pulsed DPSS lasers take center stage here. However, it’s been shown that pulsed fiber lasers can also be a great option. For example, you could utilize fiber lasers to measure detection limits as low as micrograms per gram (µg/g) for many common metals and alloys, including aluminum, lithium, magnesium, and beryllium. Analytical performances showed to be, in some cases, close to those obtainable with a traditional high-energy Nd:YAG laser. The beam quality of fiber lasers, in conjunction with longer pulse widths, resulted in significantly deeper and cleaner ablation craters. If you want to learn more about LIBS and ideal laser sources, check out either this blog: “OEM Fiber Lasers for Industrial Laser Induced Breakdown Spectroscopy,” or this blog: “Laser Induced Breakdown Spectroscopy (LIBS) in Biomedical Applications.” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!
There are many different types of laser designation systems used by the military today. Still, they all share the same basic functionality and outcome. At a glance, the laser requirements seem relatively straightforward. The laser needs to be invisible to the human eye, and it needs to have a programmable pulse rate. Still, when you look in more detail, many small factors add up to big problems if not appropriately addressed. Excellent divergence and beam pointing stability, low timing jitter, and rugged, low SWaP design are all critical features of a good laser designation source. Read more on these critical features in this article: “What are the Critical Laser Source Requirements for Laser Designation?” Get more information from our Lasers 101, Blogs, Whitepapers, FAQs, and Press Release pages in our Knowledge Center!