Select categoty / subcategory:

Low Degree of Polarization Broadband Source for Test & Measurement

The ISB (Integrated Spectral Bench) exhibits excellent wavelength stability, high power, low-intensity noise, low coherence, and significantly large bandwidth. The Luxmux Low DoP series of all-semiconductor optical sources has a wide selection of wavelengths that can be offered singularly or combined, covering the entire range of telecom spectral bands (O to U). The… Read More

Laser Diodes for Gas Sensing: Mode-Hop-Free Tunability With High SMSR

Single-frequency lasers have long been the cornerstone of standoff gas detection applications, particularly in traditional LIDAR (Light Detection And Ranging), DIAL (Differential Absorption LIDAR), and TDLAS (Tunable Diode Laser Absorption Spectroscopy) applications, where the sample needs to be accurately measured.  More recently, as single-frequency laser diodes have become more common and less expensive, with a larger measurement range and compact size, they are being utilized in more localized and industrial gas sensing app… Read More

TO-Can Laser Diode Heat Dissipation

When operating a laser diode, proper thermal management is critical to avoid damage. A few key aspects to consider are the generation and dissipation of waste heat, laser diode operating temperature, and proper heatsinking. This article will focus on TO-Can packages, giving consideration to these key aspects and providing useful information for proper thermal m… Read More

445nm High-Power Diode Lasers for Micro-Welding Applications

Micro-welding is a high-precision welding method employed to fuse minuscule metal parts or features together. Traditionally, this requires a highly skilled specialist, utilizing a variety of skill sets and knowledge of various materials’ properties, taking into account all of the particular considerations involved in such a precise, delicate process. The Ford company first developed micro-welding to solve the problem of welding materials in a vacuum tube with a high melt… Read More

New Dual-Wavelength Raman Probe Enhances Flexibility & Throughput

Raman Spectroscopy has become increasingly popular in recent years. With more demand for this application, some companies have strived to make advancements to the associated technology and hardware, in an effort to provide better results, more throughput, increased flexibility, and a reduction in total footprint of these devices. This Raman Probe provides great flexibility with configurable optics and advanced features like dual-wavelength capability using only one spe… Read More

Space-Qualified Laser Diodes: Development, Qualification & Acceptance

For many years, space applications have steadily increased the utilization of laser diodes for various instruments (mainly pump sources for solid-state lasers). Because of this, organizations have developed qualification methodologies to ensure high levels of quality, performance, and lifetime. In recent years, increasingly complex scientific payloads have required more precise lasers for metrology, calibration, and environmenta… Read More

Blue Diode Lasers Enable High-Quality Non-Ferrous Metal Welding

Blue diode lasers have recently become known as an excellent tool for certain processing techniques regarding copper and other non-ferrous and highly reflective metals. Copper, gold, aluminum, and certain other metals absorb blue wavelengths more easily than any other wavelengths of visible or invisible light. This higher rate of absorption allows for both higher quality results and faster processing times, when typically, there is a trade off between quality … Read More

Unprecedented QCL Wavelengths for Enhanced Molecular Spectroscopy!

Steady growth in the nuclear industry has led to an increase in demand for more accurate, efficient, and reliable detection and monitoring of critical compounds, like Uranium hexafluoride (UF6) assay or Methyl Iodide (CH3i). This has led to the development of new technologies, enhancing the capabilities of molecular spectroscopy. Entities worldwide are developing advanced spectroscopy-based technologies and methods, aiming to decrease accidents with better safeguards, enable the rapid and precise assessment of nuclear plant … Read More

How Will THIS Homogenized ‘Stub Laser’ Save You Money & Space?

It is well known that the output beam characteristic of a multimode laser diode is inherently non-uniform, due to both spatial and temporal variations of the mode profile, that result from thermal lensing and filamentation. These non-uniformities (‘hot-spots’ and ‘dark-spots’) can lead to deleterious effects for many applications, including solid-state laser pumping, Raman spectroscopy of sensitive materials, laser speckle contrast imaging, and laser ill… Read More

How Are VCSELs Contributing to the Evolution of Solid-State LiDAR?

LiDAR is a critical component of ADAS (Advanced Driving Assisting System), AVs (Autonomous Vehicles), and industrial automation systems. Highly efficient VCSELs (vertical-cavity surface-emitting lasers), with their tiny footprint, attractive pricing, and remarkable reliability and performance, will undoubtedly have an increased positive effect on the LiDAR industry. 100% solid-state LiDAR systems show great potential as the next evolution in LiDAR technology, aiming to replace traditional bulky and expensive mechanical spinning and microelectromechanical systems LiDA… Read More

What Role Can VCSELs Play On The Frontline, Fighting COVID-19?

Despite the recent economic depression caused by the COVID-19 pandemic, the medical industry has seen continued growth. Among the new industry opportunities, demand for medical devices has spiked. In this article, we’ll discuss one device in particular, the pulse oximeter, and the role VCSELs play in enhancing these devices to further support the medical industry and the fight against… Read More

Groundbreaking New QCL Wavelength Range From 10um to 17um!

Mid-IR molecular spectroscopy is a rapidly developing and promising technique, enabling high-performance chemical detection and analysis for industrial or environmental purposes, with new wavelength ranges becoming commercially available. The essential component for such applications is the laser source, adapted to the specific spectral lines (the fingerprint) of the target molecule. Quantum Cascade Lasers (QCLs) are a perfectly suited solution to build such analysis… Read More

Laser Diode Fundamentals: What are Longitudinal Modes?

Laser diodes must meet two critical requirements to facilitate the lasing process. The first requires that, at a minimum, the laser cavity’s gain increases to the point that it reaches unity with the level of losses. This unity state is known as the gain threshold. The second requirement is that there must be a longitudinal mode present inside the optical cavity, coinciding with the laser’s gain curve. This article explores precisely what longitudinal modes are and how they affect the laser diode’s pe… Read More

How Does Concatenation Enhance Raman Spectroscopy?

In this blog, the concept of “Raman Concatenation” is explained as a measurement technique utilized to overcome many of the previously outlined trade-offs. In general, many Raman measurements suffer from fluorescence, which forces the use of longer excitation wavelength (lower photon energy) lasers to prevent the fluorescence signal from overwhelming the Raman signal. However, this results in reduced sensitivity of low-cost silicon CCD detectors at higher wavenumbers, making it difficult (or impossible) to observe the “stretch” portion of the Raman spectra (i.e. 2000 – 4… Read More

How Can We Help Your Gas Sensing and Other Applications Succeed?

Single-frequency lasers have long been the cornerstone of standoff gas detection applications, particularly in traditional LIDAR (Light Detection And Ranging), DIAL (Differential Absorption LIDAR), and TDLAS (Tunable Diode Laser Absorption Spectroscopy).  More recently, as single-frequency laser diodes have become more common and less expensive, they are being utilized in more localized and industrial gas sensing app… Read More

Highly Efficient and Passively Cooled Next-Gen 275W Diode Laser

Jenoptik is now offering the JOLD-275-CPNN-1L, their latest development in the field of high-power laser sources for industrial material processing, medical, and life science applications. Thanks to Jenoptik’s patented mounting and bonding technology, this new, passively cooled diode laser is able to achieve extremely high performance in hard pulse and CW applications. Jenoptik also utilizes the efficient and high-performance semiconductor materials they produce themselves to manufacture their high-power las… Read More

Why Choose LDX Optronics?

LDX Optronics and RPMC Lasers have been partnered together since the late ’90s to provide customers with the broadest selection of diode wavelengths and packaging configurations on the market.  Over the course of our nearly 25-year relationship with LDX, we have seen their multimode diode laser capabilities grow to encompass sources ranging all the way from 400nm to 1900nm and power levels up to 40W.  However, the most impressive thing about LDX is there packaging expertise, which allows them to supply an incredibly diverse range of standard laser diode packages as well as customized a… Read More

The three most common mistakes when mounting and heatsinking a TO-can

Diode lasers come in a wide variety of packaging configurations. Each package type provides different pros and cons when it comes to beam delivery, heat sinking, integration, and so on.  The two most common packages for what we call “component level” diode lasers are the TO-can and the 14-pin butterfly package.  While there are some exceptions, in general, the TO-can is the preferred packaging for open beam laser delivery, and the butterfly is preferred for fiber-coupled beam d… Read More

Choosing the Right Connector for Your Fiber-Coupled Laser Diode

Having trouble deciding which fiber-coupling connection is best for you? Check out our newest white paper, titled “Choosing the Right Connector for Your Fiber-Coupled Laser Diode.”  In this paper, we review: Pros and cons of the most common fiber optic connectors and the Importance of the self-centeri… Read More

Why should single-mode fibers have an angle polished?

When you look through a window at night and see your reflection, that is because on average 4% of the incident light is reflected at the interface between air and glass.   While 4% may seem like a small amount when dealing with lasers, a 4% back reflection can have more than enough power to destabilize or even permanently destroy the laser.    If the laser beam is perfectly aligned through the system, so too will the back reflections be perfectly aligned to go back into the las… Read More

Why Shouldn’t You Voltage Drive a Laser Diode?

Electric power is determined by the product of the voltage and current supplied to a device. As a result, when designing an adjustable power supply, one of those two parameters must be variable, and the other constant if you want to be able to tune the power supply to your desired output. These two types of supplies are known broadly as constant current (CC) and constant voltage (CV) output circuits. When driving a laser diode, both CC and CV power supplies have pros and cons, but the rule of thumb is that you should always use a CC supply and never… Read More

Why are single-emitters winning over bars

Ever since the industrial fiber laser boom in the early 2000’s, there has been an ongoing debate about the most efficient way to produce high power, fiber-coupled, diode pump lasers. At its root, this debate comes down to the question of single-emitters versus diode bars. While single-emitters cannot come close to the power levels produced by diode bars, typically only producing a few watts of output power, they have several advantages over bars that make them far more desirable for systems in… Read More

How to get the right laser spot at the right distance? – Part 2

In part one of this blog series, we set out to answer the question of “how to get the right laser spot at the right distance?”  As we went on to explain, this simple question doesn’t have a simple answer, especially when we are talking about single-mode fiber optics.  In that post, we took the time to go through
an introduction of Gaussian beam optics and provided a few examples of how that can be used to determine the lens you need to choose for a given spot size.  In part two, we are going to explore the far more straightforward case of imaging a multi-mode las… Read More

RPMC Offers New Homogenized Diode Laser for Raman Spectroscopy

RPMC is proud to announce the release of their new Homogenized Multi-Mode 14-Pin BF Diode.  This multi-mode, wavelength stabilized laser features high output power with low power consumption and narrow spectral bandwidth. Another exciting feature is the shaped and homogenized beam profile, which evenly spreads out the power density and shapes the beam to match the field of view of a camera. The Homogenized Multi-Mode 14-Pin BF Diode is designed to replace expensive DFB, DBR, fiber, and external cavi… Read More

What is Single Longitudinal Mode

Within the laser community, one of the most overused and often miscommunicated terms is the phrase “single mode.”  This is because a laser beam when traveling through air takes up a three-dimensional volume in space similar to that of a cylinder; and just as with a cylinder, a laser beam can be divided into independent coordinates each with their own mode structure.  For a cylinder we would call these the length and the cross-section, but as shown in the figure below for a laser beam, we define these as the transverse electromagnetic (TEM) plane and the longitud… Read More