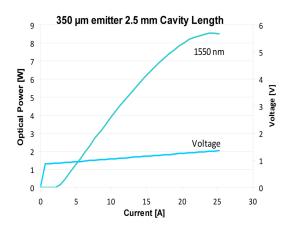
11/30/23, 4:24 PM PI Sheet

SemiNex delivers the highest available power at infrared wavelengths between 12xx and 19xx nm. When necessary wavelengths between 12xx and 19xx nm. When necessary we will further optimize the design of our InP laser chips to meet our customers' specific optical and electrical performance needs. Diodes, bars and packages are tested to meet customer and market performance demands. Typical results and packaging options are shown. Contact SemiNex for additional details or to discuss your specific requirements.



COC 2.5mm PRELIMINARY

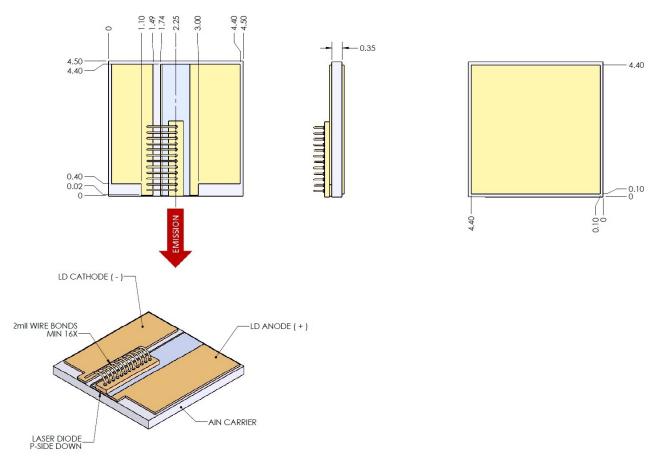
High Power SemiNex Lasers 12xx to 19xx nm Custom Wavelengths Available

- Applications
 OEM Medical
- Telecom/OTDR
- DPSS pump source
- LiDAR
- Military / Aerospace

- Features
 Cost effective
 High Output Power
 High Efficiency
 Standard Package

11/30/23, 4:24 PM PI Sheet

11/30/23, 4:24 PM PI Sheet



	Symbol	COC-101	Units
Optical			
Wavelength	λ _c	1550	nm (±20)
Output Power (<10ns)	P∘	30.00	watts (±10%)
Ouput Power (150ns)	P _°	30.00	watts (±10%)
Chip Cavity Length	CL	2500	μm
Emitter Width	W	350	μm
Emitter Height	Н	1	μm
Spectral Width	δλ	0	nm 3dB
Slope Efficiency	η∘	0	W/A
Fast Axis Div.*	Θ_perp	28	deg FWHM
Slow Axis Div.	Θ_parallel	14	deg FWHM
Electrical			
Power Conversion Eff.	η	24	%
Threshold Current	I _{th}	0.5	A
Operating Current (<10ns)	I _{op}	100	A
Operating Current (150ns)	I _{op}	100	A
Operating Voltage	V_{op}	5	V
Mechanical			
Weight		0.05	g
Operating Temp.**		-40 to 60	°C
Storage Temp.		-40 to 80	°C

Specified values are rated at a constant heat sink temperature of 20°C.

**Specified operating conditions are based on 20C heat sink temperature. High temperature operation will reduce performance and MTTF.

Unless otherwise indicated all values are nominal.

All statements, technical information and recommendations related to the product herein are based upon information believed to be reliable or accurate. The accuracy or completeness herein is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. SemiNex Corporation reserves the right to change at any time without notice the design, specification, deduction, fit or form of its described herein, including withdrawal at any time of a product offered for sale herein. Users are encouraged to visit www.seminex.com for the latest data. SemiNex Corporation makes no representations that the products herein are free from any intellectual property claims of others. Please contact SemiNex for more information. • 2016 SemiNex Corporation

 $SemiNex\ Corporation \bullet 153\ Andover\ St\ \bullet\ Danvers,\ MA\ 01923\ \bullet\ 978-326-7700\ \bullet\ Email:\ info@seminex.com\ \bullet\ www.seminex.com\ One of the control of t$

Date Created: Nov 30 2023 10:23PM UTC