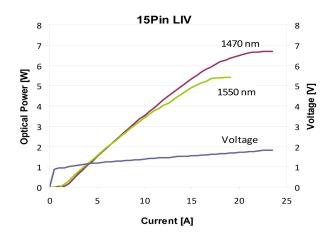
1/10/24, 8:44 AM PI Sheet

15-Pin Fiber-Coupled Laser Diode w/TEC

High Power Multi-Mode SemiNex Lasers 12xx to 19xx nm Custom Wavelengths Available


Applications

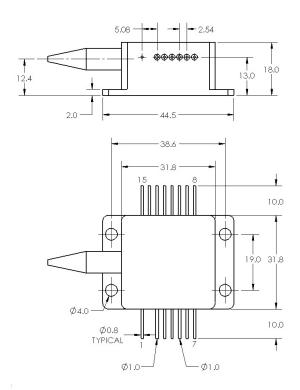
- Medical Lasers for OEM
- LiDAR
- **DPSS Pumping Source**
- Free Space Communications
- Research
- · Military / Aerospace

- High Output Power
- High Dynamic Power Range
- High Efficiency Standard Low Cost Package
- Thermal Electric Cooler

SemiNex delivers the highest available power at infrared wavelengths between 12xx and 19xx nm. When necessary we will further optimize the design of our InP laser chips to we will further optimize the design of our InP laser chips to meet our customers' specific optical and electrical performance needs. Diodes, bars and packages are tested to meet customer and market performance demands. Typical results and packaging options are shown. Contact SemiNex for additional details or to discuss your specific requirements.

1/10/24, 8:44 AM PI Sheet

15 Pin Fiber Module


	Symbol	15P-103	Units
Optical			
Wavelength	$\lambda_{ extsf{c}}$	1560	nm (±20)
Output Power (CW)	P∘	4.90	watts (±10%)
Spectral Width	δλ	15	nm 3dB
Slope Efficiency	η∘	0	W/A
Optical Fiber Core Dia.	η۰	200	μm
Optical Fiber NA		0.22	·
Electrical			
Power Conversion Eff.	η	20.40	%
Threshold Current	l _{th}	0.5	A
Operating Current	I _{op}	15	A
Operating Voltage	V_{op}	1.6	V
Lead Soldering Temp.	°C	250	°C
Aiming Beam			
Output Power	P_a	2	mW
Wavelength	λ_{a}	650	nm
Operating Current**	I _{op}	25	mA
Voltage Limit	V_{max}	2.2	V
TEC			
TEC Voltage	V	9.8	V
TEC Current	A	6	A
Mechanical			
Weight		100	g
Operating Temp.**		-40 to 60	°C
Storage Temp.		-40 to 80	°C
Fiber Length		1.5	meters
Connector		SMA905	
Thermistor			
Thermistor Constant	β	3477	β
Thermistor Resistance	R	10000	K ohm

Specified values are rated at a constant heat sink temperature of 20°C.

**Specified operating conditions are based on 20C heat sink temperature. High temperature operation will reduce performance and MTTF.

Unless otherwise indicated all values are nominal.

**Aiming beam is current driven

PIN CALLOUT: (FOR REFERENCE ONLY, REFER TO DOCUMENTATION SUBMITTED WITH PRODUCT FOR ACTUAL PIN CALLOUTS)

CASE

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

LD (+)
LD (+)
LD (-)
LD (-)
PD (-)
FEC (-) (OPTIONAL)
THERMISTOR
THERMISTOR
NONE
NONE
AIMING BEAM LD (+)
AIMING BEAM LD (-)
TEC (+) (OPTIONAL)

All statements, technical information and recommendations related to the product herein are based upon information believed to be reliable or accurate. The accuracy or completeness herein is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. SemiNex Corporation reserves the right to change at any time without notice the design, specification, deduction, fit or form of its described herein, including withdrawal at any time of a product offered for sale herein. Users are encouraged to visit www.seminex.com for the latest data. SemiNex Corporation makes no representations that the products herein are free from any intellectual property claims of others. Please contact SemiNex for more information. • 2016 SemiNex Corporation

SemiNex Corporation • 153 Andover St • Danvers, MA 01923 • 978-326-7700 • Email: info@seminex.com • www.seminex.com

Date Created: Jan 10 2024 2:34PM UTC